Double Cone Bipolar Tesla Coil

My Research

Ideal Tesla Magnifier System
Spiral & Solenoid Combination Coil
Flat Spiral Secondary and Longitudinal Waves
Trifilar Wye Secondary Coil
Tesla Magnifier Experiment
Magnetic Quenching Experiment
Bilfilar Electromagnet Experiment
Bucking Magnet Experiment
Fluorescent Tube Battery
Electrolytic Rectifier
Tesla Propulsion
Periodic Tables

Tesla Resources

Known Tesla Publications
Articles About Tesla and His Work
Tesla Notes
Tesla Photos

QADI Web Sites

Quantum AetherDynamics Institute
Aether Physics Model
Aether Wizard
Conductance Yoga
Herbal Folklore
Lambdoma Music
Secrets of the Aether
Unified Force Theory
James Clerk Maxwell

Domains For Sale

Privacy Policy

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player

Vajra Periodic Table print
Vajra Periodic Table
by Aether Wizard


My Inductance Formula
Relationships of Frequency
Experimenter's Handbook
Wheeler - formulas for inductance
Measure Inductance w/o LCR Meter

Of Interest

Tesla Coil Mailing List
High Voltage

The Electrical Engineer 

May 6, 1891

An Electrolytic Clock

by Nikola Tesla

If a delicately and pivoted and well-balanced metal disc or cylinder be placed in a proper plating solution midway between the anode and cathode, one half of the disc becomes electro positive and the other half electro negative. Owing to this fact metal is deposited on one, and taken off from the other half, and the disc is caused to rotate under the action of gravity. As the amount of metal deposited and taken off is proportionate to the current strength, the speed of rotation, if it be small, is proportionate to the current.

The first device of this kind was operated by me early in 1888, in the endeavor to construct an electric meter. Upon learning, however, that I had been anticipated by others, as far as the principle is concerned, I devised the apparatus illustrated in the accompanying engraving. Here F is a rectangular frame of hard rubber which is fastened upon a wooden base. This frame is about — inch thick, 6 inches long and 5 inches high.

On both of its upright sides are fastened thick metal plates which serve as the electrodes. These plates are held firmly against the rubber frame by the binding posts T T and T1 T1 On the lateral sides of the frame are fastened the brass plates B and B1, respectively, of the same shape as the rubber frame F. These brass plates serve to keep in place two plates of polished glass, and the vessel is hermetically sealed by placing a soft rubber washer under and above each of the glass plates. In this manner the plates may be screwed on tight without fear of breaking them.

The plating solution, which in this case is a concentrated solution of sulphate of copper, is poured in through an opening on the top of the rubber frame, which is closed by a plug   R.

In the centre of the vessel is placed a light and delicately balanced copper disc D, the axis of which is supported by a capillary glass tube which is fixed to one of the glass plates by means of sealing wax, or other material not attacked by the liquid. To diminish the friction as much as possible, the capillary tube which serves as a bearing contains a drop of oil. The centre of disc should be equi-distant from both the electrodes. To one side of the axis of the disc is fastened a very light indicator or pointer consisting preferably of a thin glass thread. The glass plate next to this pointer has a circle with the usual hour divisions engraved upon it, as on a clock dial. This circle may be movable so that it can be put in any position relatively to the pointer. If the dial is not movable then a thin wire of annealed iron may be used as on a pointer. The wire should then be so placed that it is exactly in the centre of the solution. By means of a horse-shoe magnet the disc may then be rotated and set in proper position.

The copper solution being carefully poured in, and the plug R replaced, the terminals of a constant current battery are connected to the binding-posts TT1, and from time to time the rotation of the disc is observed. A shunt is connected to the other two binding-posts TT1, and by varying the resistance of this shunt, or other disc, the speed of rotation is regulated until it is made to correspond to the division of the dial; that is, until, for instance, one turn is made in 12 hours.

Obviously this instrument was not devised for a practical purpose. Neither will it be quite exact in its indications. There are certain errors, unavoidable from the principle; for instance, the friction, which cannot be completely overcome. But the device  is interesting as a means of indicating time in a novel manner. It will, however, be found that by a careful construction, constant current, and a temperature compensator, it may be made to rotate with almost perfect uniformity. The current density should, of course, be very small to secure the best results, and the disc of about 3 inches diameter should turn once in 6 hours. It is probable that with a silver solution and a silver plate better results would be obtained.

It is very interesting to note the appearance of the solution and disc in such a narrow transparent vessel. The solution appears a clear blue, one side of the disc seems to be silver white in a certain position, and the other half is dark like tarnished silver. There is no line of demarcation, but the shades melt beautifully together.