Double Cone Bipolar Tesla Coil

My Research

Ideal Tesla Magnifier System
Spiral & Solenoid Combination Coil
Flat Spiral Secondary and Longitudinal Waves
Trifilar Wye Secondary Coil
Tesla Magnifier Experiment
Magnetic Quenching Experiment
Bilfilar Electromagnet Experiment
Bucking Magnet Experiment
Fluorescent Tube Battery
Electrolytic Rectifier
Tesla Propulsion
QADI Lab
Periodic Tables

Tesla Resources

Known Tesla Publications
Articles About Tesla and His Work
Tesla Notes
Tesla Photos

QADI Web Sites

Quantum AetherDynamics Institute
Aether Physics Model
Aether Wizard
Conductance Yoga
Herbal Folklore
Lambdoma Music
Terracycles
Secrets of the Aether
Unified Force Theory
James Clerk Maxwell

Domains For Sale

alni.co
bodhistore.com
delmoni.co
jelly.co
miranet.org
petti.co
sili.co
tiahuana.co
Privacy Policy

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player

Vajra Periodic Table print
Vajra Periodic Table
by Aether Wizard

Formulas

My Inductance Formula
Relationships of Frequency
Experimenter's Handbook
Wheeler - formulas for inductance
Measure Inductance w/o LCR Meter

Of Interest

Tesla Coil Mailing List
High Voltage

Electrician — London

Dec. 17, 1892, p. 391.

The Ewing High-Frequency Alternator and Parsons Steam Engine

In your issue of November 18 I find a description of Prof. Ewing’s high-frequency alternator, which has pleased me chiefly because it conveyed to me the knowledge that he, and with him, no doubt, other scientific men, is to investigate the prop­erties of high—frequency currents. With apparatus such as you describe, shortly a number of experimenters, more competent than myself, will be enabled to go over the ground as yet but imperfectly explored, which will undoubtedly result in the obser­vation of novel facts and elimination of eventual errors.

I hope it will not be interpreted as my wishing to detract anything from Prof. Ewing’s merit if I state the fact that for a considerable time past I have likewise thought of combining the identical steam turbine with a high—frequency alternator. Anch’ io sono pittore. I had a number of designs with such turbines, and would have certainly carried them out had the turbines been here easily and cheaply obtainable, and had my attention not been drawn in a different direction. As to the combination to which you give a rather complicated name, I consider it an excellent one. The advantages of using a high speed are especially great in connection with such alt­ernators. When a belt is used to drive, one must resort to extraordinarily large diameters in order to obtain the necessary speed, and this increases the difficul­ties and cost of construction in an entirely unreasonable proportion. In the mach­ine used in my recent experiments the weight of the active parts is less than 50 pounds, but there is an additional weight of over 100 pounds in the supporting frame, which a very careful constructor would have probably made much heavier. When run­ning at its maximum speed, and with a proper capacity in the armature circuit, two and a one-half horsepower can be performed. The large diameter (30 inches), of course, has the advantage of affording better facility for radiation; but, on the other hand, it is impossible to work with a very small clearance.

I have observed with interest that Prof. Ewing has used a magnet with alternating poles. In my first trials I expected to obtain the best results with a machine of the Mordey type - that is, with one having pole projections of the same polarity. My idea was to energize the field up to the point of the maximum permeability of the iron and vary the induction around that point. But I found that with a very great number of pole projections such a machine would not give good results, although with few projections, and with an armature without iron, as used by Mordey, the re­sults obtained were excellent. Many experiences of similar nature made in the course of my study demonstrate that the ordinary rules for the magnetic circuit do not hold good with high frequency currents. In ponderable matter magnetic permeability, and also specific inductive capacity, must undergo considerable change when the frequency is varied within wide limits. This would render very difficult the exact determination of the energy dissipated in iron cores by very rapid cycles of magnetization, and of that in conductors and condensers, by very quick reversals of current. Much valuable work remains to be done in these fields, in which it is so easy to observe novel phenomena, but so difficult to make quantitative determ­inations. The results of Prof. Ewing’s systematical research will be awaited with great interest.

It is gratifying to note from his tests that the turbines are being rapidly im­proved. Though I am aware that the majority of engineers do not favor their adop­tion. I do not hesitate to say that I believe in their success. I think their principle uses, in no distant future, will be in connection with alternate current motors, by means of which it is easy to obtain a constant and, in any desired ratio, reduced speed. There are objections to their employment for driving direct current generators, as the commutators must be a source of some loss and trouble, on account of the very great speed; but with an alternator there is no objectionable feature whatever. No matter how much one may be opposed to the introduction of the turbine, he must have watched with surprise the development of this curious branch of the industry, in which Mr. Parsons has been a pioneer, and everyone must wish him the success, which his skill has deserved.

Nikola Tesla